Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
AJR Am J Roentgenol ; 220(5): 672-680, 2023 05.
Article in English | MEDLINE | ID: covidwho-20239781

ABSTRACT

BACKGROUND. Prior work has shown improved image quality for photon-counting detector (PCD) CT of the lungs compared with energy-integrating detector CT. A paucity of the literature has compared PCD CT of the lungs using different reconstruction parameters. OBJECTIVE. The purpose of this study is to the compare the image quality of ultra-high-resolution (UHR) PCD CT image sets of the lungs that were reconstructed using different kernels and slice thicknesses. METHODS. This retrospective study included 29 patients (17 women and 12 men; median age, 56 years) who underwent noncontrast chest CT from February 15, 2022, to March 15, 2022, by use of a commercially available PCD CT scanner. All acquisitions used UHR mode (1024 × 1024 matrix). Nine image sets were reconstructed for all combinations of three sharp kernels (BI56, BI60, and BI64) and three slice thicknesses (0.2, 0.4, and 1.0 mm). Three radiologists independently reviewed reconstructions for measures of visualization of pulmonary anatomic structures and pathologies; reader assessments were pooled. Reconstructions were compared with the clinical reference reconstruction (obtained using the BI64 kernel and a 1.0-mm slice thickness [BI641.0-mm]). RESULTS. The median difference in the number of bronchial divisions identified versus the clinical reference reconstruction was higher for reconstructions with BI640.4-mm (0.5), BI600.4-mm (0.3), BI640.2-mm (0.5), and BI600.2-mm (0.2) (all p < .05). The median bronchial wall sharpness versus the clinical reference reconstruction was higher for reconstructions with BI640.4-mm (0.3) and BI640.2-mm (0.3) and was lower for BI561.0-mm (-0.7) and BI560.4-mm (-0.3) (all p < .05). Median pulmonary fissure sharpness versus the clinical reference reconstruction was higher for reconstructions with BI640.4-mm (0.3), BI600.4-mm (0.3), BI560.4-mm (0.5), BI640.2-mm (0.5), BI600.2-mm (0.5), and BI560.2-mm (0.3) (all p < .05). Median pulmonary vessel sharpness versus the clinical reference reconstruction was lower for reconstructions with BI561.0-mm (-0.3), BI600.4-mm (-0.3), BI560.4-mm (-0.7), BI640.2-mm (-0.7), BI600.2-mm (-0.7), and BI560.2-mm (-0.7). Median lung nodule conspicuity versus the clinical reference reconstruction was lower for reconstructions with BI561.0-mm (-0.3) and BI560.4-mm (-0.3) (both p < .05). Median conspicuity of all other pathologies versus the clinical reference reconstruction was lower for reconstructions with BI561.0 mm (-0.3), BI560.4-mm (-0.3), BI640.2-mm (-0.3), BI600.2-mm (-0.3), and BI560.2-mm (-0.3). Other comparisons among reconstructions were not significant (all p > .05). CONCLUSION. Only the reconstruction using BI640.4-mm yielded improved bronchial division identification and bronchial wall and pulmonary fissure sharpness without a loss in pulmonary vessel sharpness or conspicuity of nodules or other pathologies. CLINICAL IMPACT. The findings of this study may guide protocol optimization for UHR PCD CT of the lungs.


Subject(s)
Lung , Tomography, X-Ray Computed , Male , Humans , Female , Middle Aged , Retrospective Studies , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Bronchi
2.
Radiology ; : 222087, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2276959

ABSTRACT

Background Photon-counting detector (PCD) CT allows ultra-high-resolution lung imaging and may shed light on morphologic correlates of persistent symptoms after COVID-19. Purpose To compare PCD CT with energy-integrating detector (EID) CT for noninvasive assessment of post-COVID-19 lung abnormalities. Materials and Methods For this prospective study, adult participants with one or more COVID-19-related persisting symptoms (resting or exertional dyspnea, cough, and fatigue) underwent same-day EID and PCD CT scans between April 2022 and June 2022. EID CT 1.0mm images and, subsequently, 1.0mm, 0.4mm, and 0.2mm PCD CT images were reviewed for the presence of lung abnormalities. Subjective and objective EID and PCD CT image quality was evaluated using a 5-point Likert scale (-2 to 2) and lung signal-to-noise ratios (SNR). Results Twenty participants (mean age, 54 years ±16 [SD], 10 men) were included. EID CT showed post-COVID-19 lung abnormalities in 15 of 20 (75%) participants with a median involvement of 10% of lung volume [IQR 0-45%], and 3.5 lobes [IQR 0-5]. Ground-glass opacities (GGO) and linear bands (both 10 of 20 participants, 50%) were the most frequent findings on EID CT. PCD CT revealed additional lung abnormalities in 10 of 20 (50%) participants, most commonly bronchiolectasis (10 of 20, 50%). Subjective image quality was improved for 1.0mm PCD vs. 1.0mm EID CT images (1 [IQR 1-2], P<.001) and 0.4mm vs. 1.0mm PCD CT images (1 [IQR 1-1], P<.001), but not for 0.4mm vs. 0.2mm PCD CT images (0 [IQR 0-0.5], P=.26). PCD CT delivered higher lung SNR vs. EID CT 1.0mm images (mean difference 0.53 ± 0.96, P=.03), but lower SNRs for 0.4mm vs. 1.0mm images, and 0.2mm vs. 0.4mm images, respectively (-1.52 ± 0.68, P<.001 and -1.15 ± 0.43, P<.001). Conclusion Photon-counting detector CT outperformed energy-integrating detector CT with regard to visualization of subtle post-COVID-19 lung abnormalities and image quality.

3.
PLoS Pathog ; 17(4): e1009487, 2021 04.
Article in English | MEDLINE | ID: covidwho-1231264

ABSTRACT

Lipocalin 2 (LCN2) is a secreted glycoprotein with roles in multiple biological processes. It contributes to host defense by interference with bacterial iron uptake and exerts immunomodulatory functions in various diseases. Here, we aimed to characterize the function of LCN2 in lung macrophages and dendritic cells (DCs) using Lcn2-/- mice. Transcriptome analysis revealed strong LCN2-related effects in CD103+ DCs during homeostasis, with differential regulation of antigen processing and presentation and antiviral immunity pathways. We next validated the relevance of LCN2 in a mouse model of influenza infection, wherein LCN2 protected from excessive weight loss and improved survival. LCN2-deficiency was associated with enlarged mediastinal lymph nodes and increased lung T cell numbers, indicating a dysregulated immune response to influenza infection. Depletion of CD8+ T cells equalized weight loss between WT and Lcn2-/- mice, proving that LCN2 protects from excessive disease morbidity by dampening CD8+ T cell responses. In vivo T cell chimerism and in vitro T cell proliferation assays indicated that improved antigen processing by CD103+ DCs, rather than T cell intrinsic effects of LCN2, contribute to the exacerbated T cell response. Considering the antibacterial potential of LCN2 and that commensal microbes can modulate antiviral immune responses, we speculated that LCN2 might cause the observed influenza phenotype via the microbiome. Comparing the lung and gut microbiome of WT and Lcn2-/- mice by 16S rRNA gene sequencing, we observed profound effects of LCN2 on gut microbial composition. Interestingly, antibiotic treatment or co-housing of WT and Lcn2-/- mice prior to influenza infection equalized lung CD8+ T cell counts, suggesting that the LCN2-related effects are mediated by the microbiome. In summary, our results highlight a novel regulatory function of LCN2 in the modulation of antiviral immunity.


Subject(s)
Influenza, Human/immunology , Lipocalin-2/metabolism , Microbiota/immunology , Transcriptome , Animals , Antigen Presentation , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Dendritic Cells/virology , Female , Gastrointestinal Microbiome , Homeostasis , Humans , Immunity , Influenza, Human/virology , Lipocalin-2/genetics , Lung/immunology , Lung/virology , Lymphocyte Activation , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL